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Abstract

A ring R is said to be a unique addition ring (UA-ring) if any semigroup isomorphism R* =
(R.%)=(8,+*)=58" of multiplicative semigroups with another ring S is always a ring isomor-
phism. See {5, 7-9] for earlier work on UA-rings. Depending on the context, we may or may not
regard O as an element of R*. An abelian group G is called a UA-group if its endomorphism
ring E(G) is a UA-ring. Given an abelian group G, denote by E¥(G) the semigroup of all
endomorphisms of G and let Rg be the collection of all rings R such that R* ~ E*(G). The
group G is said to be an E*-group if for every ring (E*(G),®), where @ is an addition on
the semigroup E*(G), there is an abelian group H such that (E*(G),@) is (isomorphic to) the
endomorphism ring of H. Equivalently, G is an E*-group if for every ring R in R¢ there is an
abelian group A such that R is (isomorphic to) the endomorphism ring of H.

Section 1 is a study of separable torsion-free abelian UA-groups. In Section 2 we develop
necessary and sufficient conditions for a torsion-free separable group to be an E™*-group. All
groups are abelian. (© 1998 Elsevier Science B.V. All rights reserved.
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1. UA-groups
Lemma 1.1. A4 rorsion-free (abelian) group of rank one is not a UA-group.

Proof. The endomorphism ring of a rank-one group is a subring of the rationals Q. But
no subring of the rationals is a UA-ring. Indeed, the map that interchanges two primes
p < q in the unique factorization of an integer extends to a semigroup isomorphism
from a subring of Q divisible by p to a subring divisible by g¢.
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We call a rank-one direct summand A4 of a torsion-free group G semiconnected if a
complementary summand for 4 has a rank-one direct summand of type comparable to
that of 4. If every rank-one summand of G is semiconnected we call G semiconnected.
The next result was announced in [6].

Theorem 1.2. A torsion-free separable group is a UA-group if and only if it is semi-
connected.

Proof. (only if’y Suppose that G =A4® B with rank(4)=1 and 4 not semiconnected.
We first show that 4 and B are fully invariant in G. Let 8 € Hom(A4,B) with 6(a)
nonzero for some a & A. Since B is separable, 0(a) belongs to a completely de-
composable direct summand C of B. Therefore 6(4) has nonzero projection into a
rank-one summand of C, whence of B. The type of this rank-one summand is then
comparable to the type of A4, contradicting that 4 is not semiconnected. We may con-
clude that 4 is fully invariant in G. Similarly, let 6 € Hom(B,4) with 0(b)#0 for
some b€ B. Again using the separability of B, the element » belongs to a com-
pletely decomposable direct summand C of B. It follows that the map 6 can be
restricted to a nonzero map from a rank-one summand of C into A4, again con-
tradicting the fact that 4 is not semiconnected. Thus, B is fully invariant as well.
Now we have End(G) = End(A) x End(B). By Lemma 1.1, End(A4) is not a UA-ring.
It is immediate, therefore, that End(A) x End(B) is not a UA-ring, so that G is not a
UA-group.

For the converse, we will employ the following lemma.

Lemma 1.3. Let R be an associative ring with 1 and suppose E ={e;: i €1} is a set
of idempotents satisfying:
1. for any nonzero r € R there exists e; in E such that re; # 0,
2. for any idempotent e; € E there exists an orthogonal idempotent e; € E such that
Sfor any x €R, if e;xe;Re; =0 = e;Re; xe;, then e, xe;=0.
Then, R is a UA-ring.

Proof. Let §:R— S be a semigroup isomorphism of rings R and S. We show that 6
is additive on Re; for any e¢; € E, that is, 8(a + b) =0(a) + 6(b) for all a,b € Re;. The
proof proceeds in small steps.

First, if e; and ¢; are orthogonal idempotents of R, then (i): O(e;re; +e¢;) = 0(e;re;) +
0(e;). This equality follows from the fact that both 6(e;) and 6(e;) left annihilate the
difference d = 0(e;re; +¢;) — O(e;re;) — 0(e;), while 0(e; )+ 0(e;) acts like a left identity
on d. Similarly, O(e;re; + ¢;) =0(e;re;) + 0(e;).

Second, (ii): O(e;jre; + e;se;) = O(e;re;) + O(e; se;). To see this, let u=e;re; +¢; and
v=e¢;se; +e;. Then using (i), O(uv) is the left side of the equality and 6(x)f(v) is the
right. In particular, € is additive on (1 — e;)Re;.

Third, O(e;re; + e; se;) = 0(e; re;) + 0(e; se;). This equality follows from the fact that
the difference O(e; re, +e; se;) — O0(e;re;) — (e, se;) is annihilated by 6(Re;) on the right
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and by 6(e;R) on the left, for any idempotent e; orthogonal to ¢;, in view of the second
equality (ii) above. In particular, we may use the idempotent e; from hypothesis (2)
of the lemma to conclude that the difference is zero.

We have shown that 0 is additive on both (1 —¢;)Re; and e;Re;. An easy calculation,
analogous to those above, shows that 8 is additive on Re, as desired.

To prove that 8 is a ring isomorphism, suppose that 8(a)+ 6(b)=06(c) and c#a+b
for some nonzero a,b,c € R. By hypothesis (1), there is an idempotent ¢; € E such that
ce; # ae; -+ be;. Since # is an additive isomorphism on Re;, we obtain the contradiction
O(ce;) # O(ae;) + 0(be;). O

We now complete the proof of Theorem 1.2 by showing that a torsion-free semi-
connected separable group G satisfies the hypotheses of Lemma 1.3. For our set E
of idempotents we take the projections onto rank-one summands of G. The separa-
bility of G gives immediately that if » is any endomorphism of G, then there is an
idempotent e € E such that re is nonzero. That is, condition (1) of Lemma 1.3 holds.
Another use of separability gives condition (2). Indeed, if ¢ is an idempotent in E
corresponding to a rank-one summand 4 of G, then the complementary summand
for A has a rank-one summand B of type comparable to that of 4. This is by the
semiconnected assumption. Assume first that fype(4) <type(B). If ¢’ is the idempo-
tent projection onto the summand B, it is clear that ¢ Rexe =0 implies exe=0. On
the other hand, if zype(B) < type(4), then exeRe' =0 implies exe =0. Thus, we may
apply Lemma 1.3 to conclude that End(G) is a UA-ring, so that G is a UA-group,
as desired. [J

2. E*-groups
Again we begin with the rank-one case.

Lemma 2.1, Let G be a torsion-free group of rank one. Then, for any addition @,
the ring (E¥*(G),®) is torsion-free.

Proof. Note that for any addition @, the additive identity is 0 and additive inverses
are the usual ones because x =—1 @ | satisfies (—1)x=x, so x=0. Since (E*(G),P)
is an integral domain, the characteristic of (E*(G),®) is either 0 or p for some
prime p. In the latter case, (a @ b)? =a” @ bP, for all a,b€(E*(G),®). Assume
p#2, and write 2 ® 1 =a for some a € (E¥*(G),®). Then a¥? =2 @ 1)k =2+ g 1,
Therefore, as endomorphisms, a*+*1? — g*P = a*P(a? — 1)=2*%P(27 — 1). Since we are
working with nonzero endomorphisms of a rank-one group, which can be regarded as
rational numbers, the last equation implies a=2, leading to the contradiction 1 =0.
If p=2, then 1 ®1=0 and | = —1 by the uniqueness of additive inverses. This final
contradiction shows that the ring (E*(G),®) has characteristic zero and is therefore
torsion-free. OJ
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Lemma 2.2. A torsion-free group of rank one is an E*-group if and only if it is
divisible by at most finitely many primes.

Proof. Let G be torsion-free of rank one and suppose G is divisible only by a finite
set P of primes. We first prove that for any addition ®, the ring (E*(G), ®) is reduced
(as an abelian group). First suppose 1 is a divisible element of (E*(G),®). A routine
check shows that (1), the pure subgroup of (E*(G),®) generated by 1, is in fact a
subring of (E*(G),®) that is isomorphic to Q. In particular, the multiplicative group
Q* is isomorphic to a subgroup of E¥(G). But @* ~7, x @y, Z [4, p. 313]. On the
other hand, the multiplicative group of E*(G) looks like Z, x € pepP) X D ,epZ.
where (p) denotes the multiplicative semigroup generated by p. Thus, an embedding
of @* into E*(G) is impossible, and 1 is not divisible, as asserted.

Next, let D be the maximal divisible subgroup of (E*(G),®). There must be a
nonzero integer n such that i=1@& --- @ 1 (n summands) is not invertible as an
element of (E*(G), ®). Otherwise, the equation Aix =nx=x3---Gx =1 would always
be solvable in (E*(G),®) and | would be divisible, contradicting the first paragraph
of the proof. We may assume for simplicity that » is, in fact, a prime. Suppose d; is a
nonzero element of D. Then, dy may be expressed uniquely as a product of primes in
the multiplicative semigroup of E*(G), regarded as a subset of Q*. But, by divisibility,
for each positive integer & there exists d; € D such that n*d, = dy. This contradiction
shows that D must be zero and (E*(G),®) is reduced. We may now apply Comner’s
Theorem [2] to conclude that (E*(G),®) is the endomorphism ring of an abelian
group, that is, G is an E™-group.

Conversely, suppose that the group G is divisible by infinitely many primes { p € P}.
Multiplication by p € P is an automorphism of G while multiplication by a prime not
in P is not an automorphism. It follows that (neglecting 0)

EXNG)~Z, x PZ x Pp).

Ry pepP

where Z; is the group generated by multiplication by —1, each copy of Z represents
the group generated by multiplication by some p € P, and (p) represents the semigroup
generated by multiplication by p ¢ P (see [4, Section XVIII]). Denote by F the field
of rational functions over Q in the commuting variables {x,: p¢ P} and let 4 be the
subring of all elements of the form f/g, where f.g are polynomials in the variables
x, such that g is nonzero whenever any x, is set equal to 0 (x, does not divide g).
Then the nonzero multiplicative structure on 4 is given by

A~ 7, x @z x P xn) ~EX(G),

Ro pEpP

where each copy of Z represents the multiplicative group generated by one of the
countable many invertible polynomials g and (x,) is the multiplicative semigroup
generated by x,. Plainly, the additive group of 4 is a torsion-free divisible group
of infinite rank. If 4 is the endomorphism ring of some abelian group H, then H
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must be a torsion-free divisible group of infinite rank. But the endomorphism ring
of such a group is uncountable. Thus, 4 is not an endomorphism ring and G is not
an E*-group. O

A rank-one summand of a torsion-free separable group is called isolated if it is not
semiconnected.

Theorem 2.3. A torsion-free separable group is an E*-group if and only if every
isolated rank-one direct summand is divisible by at most finitely many primes.

Proof. Assume there is an isolated rank-one direct summand B of the torsion-free
separable group G such that B is divisible by infinitely many primes p & P. Write
G=B&C. Then B and C are fully invariant (see the proof of Theorem !.2) so
that E(G)=E(B)® E(C). By Lemma 2.2 there is a torsion-free ring R such that
R* ~E*(B), but R is not an endomorphism ring. But then S =R® E(C) cannot be
an endomorphism ring either, and S* ~ E*(G). Thus, G is not an E™*-group.

Conversely, if G has no isolated direct summands, the G is a UA-group by
Theorem 1.2, and therefore an E*-group. Suppose now that G has isolated summands,
all of which are divisible by at most finitely many primes. We can decompose G as
G= @iel G; ® G', where each G; is an isolated rank-one summand and G’ has no
isolated direct summands. This decomposition follows from the fact that if X is an
isolated rank-one summand then X is the unigue summand of type equal to type(X).
See also [1]. Suppose that R is any ring with 0: R* ~ E*(G). Then, using idempotents,
we can write R=R(/)D R’, where R’ = 0E(G") and R(I)=0E(ED,,; G;). Furthermore,
for any i €1, we can write R(I)=R; ® R}, where R; =0E(G;). Note that R, is a ring,
since E(G;)=¢e;E(G)e; for an appropriate idempotent e;. By Lemma 2.1 and the first
part of the proof of Lemma 2.2, each R; is a reduced torsion-free ring. Since G’ is a
UA-group, then the isomorphism @ restricted to E(G’) is a ring isomorphism. Therefore
R’, whence R is a reduced torsion-free ring.

We next show that for any prime p, R contains no nontrivial homomorphic im-
age of the abelian group of p-adic integers J,. Since R is reduced, any map J, — R
must be monic (any proper homomorphic image of J, is divisible). In particular,
we can compose with projections to get maps J, — R(/) —R;, which must all be
zero — they cannot be monic since R, is countable. Thus, we can restrict our at-
tention to maps J, — R’. But as noted above, G’ is a UA-group. Thus, R’ ~E(G')
as rings, and an embedding 0:J, — E(G’) can be used to produce a nonzero map
f,:J, — G’, by x — 6(x)(g), where g€ G’ is chosen to make the map nonzero. But
a mapping of J, into a reduced separable group must be zero. Otherwise, we could
produce a nonzero map of J, into a (reduced) rank one summand. Thus, R con-
tains no nonzero homomorphic image of .J,, that is, R is cotorsion-free. By the main
theorem of [3], R is the endomorphism ring of some group and G is a UA-group,
as desired. O
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