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Abstract 

A ring R is said to be a unique addition ring (UA-ring) if any semigroup isomorphism R* = 
(R, *) N (S, *) = S* of multiplicative semigroups with another ring S is always a ring isomor- 
phism. See [5,7-91 for earlier work on UA-rings. Depending on the context, we may or may not 
regard 0 as an element of R*. An abelian group G is called a UA-group if its endomorphism 
ring E(G) is a UA-ring. Given an abelian group G, denote by E*(G) the semigroup of all 
endomorphisms of G and let RG be the collection of all rings R such that R* = E*(G). The 
group G is said to be an E*-group if for every ring (E*(G),@), where @ is an addition on 
the semigroup E*(G), there is an abelian group H such that (E*(G), @) is (isomorphic to) the 
endomorphism ring of H. Equivalently, G is an E*-group if for every ring R in RG there is an 
abelian group H such that R is (isomorphic to) the endomorphism ring of H. 

Section 1 is a study of separable torsion-free abelian UA-groups. In Section 2 we develop 
necessary and sufficient conditions for a torsion-free separable group to be an E*-group. All 
groups are abelian. @ 1998 Elsevier Science B.V. All rights reserved. 

1991 Math. Subj. Class.: 2OK20: 20K30 

1. U A-groups 

Lemma 1.1. A torsion-free (abeliun) yroup of rank one is not a UA-yroup. 

Proof. The endomorphism ring of a rank-one group is a subring of the rationals Q. But 

no subring of the rationals is a UA-ring. Indeed, the map that interchanges two primes 

p * q in the unique factorization of an integer extends to a semigroup isomorphism 

from a subring of Q divisible by p to a subring divisible by q. 
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We call a rank-one direct summand A of a torsion-free group G semiconnected if a 

complementary summand for A has a rank-one direct summand of type comparable to 

that of A. If every rank-one summand of G is semiconnected we call G semiconnected. 

The next result was announced in [6]. 

Theorem 1.2. A torsion-free separable group is a UA-group if and only if it is semi- 

connected. 

Proof. (only if) Suppose that G = A @B with rank(A) = 1 and A not semiconnected. 

We first show that A and B are fully invariant in G. Let I3 E Hom(A,B) with e(a) 

nonzero for some a E A. Since B is separable, e(a) belongs to a completely de- 

composable direct summand C of B. Therefore e(A) has nonzero projection into a 

rank-one summand of C, whence of B. The type of this rank-one summand is then 

comparable to the type of A, contradicting that A is not semiconnected. We may con- 

clude that A is fully invariant in G. Similarly, let (3 E Hom(B,A) with B(b) # 0 for 

some b E B. Again using the separability of B, the element b belongs to a com- 

pletely decomposable direct summand C of B. It follows that the map 8 can be 

restricted to a nonzero map from a rank-one summand of C into A, again con- 

tradicting the fact that A is not semiconnected. Thus, B is fully invariant as well. 

Now we have End(G) = End(A) x End(B). By Lemma 1.1, End(A) is not a UA-ring. 

It is immediate, therefore, that End(A) x End(B) is not a UA-ring, so that G is not a 

UA-group. 

For the converse, we will employ the following lemma. 

Lemma 1.3. Let R be an associative ring with 1 and suppose E = {ei: i E I} is a set 

of idempotents satisfying: 
1. for any nonzero r E R there exists ei in E such that rei # 0; 
2. for any idempotent ei E E there exists an orthogonal idempotent ej E E such that 

for any x E R, if eixeiRej = 0 = ejReixei, then e,xei = 0. 
Then, R is a UA-ring. 

Proof. Let 8: R--t 5’ be a semigroup isomorphism of rings R and S. We show that 0 

is additive on Rei for any ei E E, that is, @a + b) = e(a) + 8(b) for all a, b E Rei. The 

proof proceeds in small steps. 

First, if ei and ej are orthogonal idempotents of R, then (i): B(ejrei fei) = e(e,rei) + 

e(ei). This equality follows from the fact that both e(ei> and e(ej) let? annihilate the 

difference d = tl(ejrei + ei) - e(ejrei) - e(ei), while e(ei)+ e(ej) acts like a left identity 

on d. Similarly, O(ejrei + cj) = e(ejrei) + e(ej). 

Second, (ii): e(e, rei + cj sci) = e(ej rci) + e(ej sei). TO see this, let u = cj rei + ej and 

u = ejsej + ei. Then using (i), B(uu) is the left side of the equality and O(u)fl(u) is the 

right. In particular, 0 is additive on (1 - ei)Rei. 
Third, B(ei Yei + ei sei) = B(ei rei) + t?(ei sei). This equality follows from the fact that 

the difference e(ci re, + ei sei) - B(eirei) - B(ei sei) is annihilated by fI(Rej) on the right 
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and by 8(ejR) on the left, for any idempotent ej orthogonal to ei, in view of the second 

equality (ii) above. In particular, we may use the idempotent cj from hypothesis (2) 

of the lemma to conclude that the difference is zero. 

We have shown that 6’ is additive on both (1 - ei)Rei and eiRei. An easy calculation, 

analogous to those above, shows that 0 is additive on Re, as desired. 

To prove that 0 is a ring isomorphism, suppose that &a) + 8(b) = e(c) and c # a + b 

for some nonzero a, b, c E R. By hypothesis ( 1 ), there is an idempotent ci E E such that 

cei # aei + bei. Since 0 is an additive isomorphism on Rei, we obtain the contradiction 

0(cei) # @(aei) + Q(bei). 0 

We now complete the proof of Theorem 1.2 by showing that a torsion-free semi- 

connected separable group G satisfies the hypotheses of Lemma 1.3. For our set E 

of idempotents we take the projections onto rank-one summands of G. The separa- 

bility of G gives immediately that if Y is any endomorphism of G, then there is an 

idempotent e E E such that re is nonzero. That is, condition (1) of Lemma 1.3 holds. 

Another use of separability gives condition (2). Indeed, if e is an idempotent in E 
corresponding to a rank-one summand A of G, then the complementary summand 

for A has a rank-one summand B of type comparable to that of A. This is by the 

semiconnected assumption. Assume first that type(A) < type(B). If e’ is the idempo- 

tent projection onto the summand B, it is clear that e’Rexe = 0 implies exe = 0. On 

the other hand, if type(B) 5 type(A), then exeRe’ = 0 implies exe = 0. Thus, we may 

apply Lemma 1.3 to conclude that End(G) is a UA-ring, so that G is a UA-group, 

as desired. 0 

2. E*-groups 

Again we begin with the rank-one case. 

Lemma 2.1. Let G be a torsion-free group of rank one. Then, for any addition a,, 
the ring (E*(G),@) is torsion-free. 

Proof. Note that for any addition $, the additive identity is 0 and additive inverses 

are the usual ones because x = - 1 @ 1 satisfies (-1)x =x, so x = 0. Since (E*(G), gi) 

is an integral domain, the characteristic of (E*(G), $3) is either 0 or p for some 

prime p. In the latter case, (a @ b)P = up @ b P, for all a, b E (E*(G),@). Assume 

pf2, andwrite2@l=a forsomeaE(E*(G),$). Thenakp=(2@l)kJ’=2kJ’@1. 

Therefore, as endomorphisms, a(kfl)p - akp = akp(ap - 1) = 2kp(2p - 1). Since we are 

working with nonzero endomorphisms of a rank-one group, which can be regarded as 

rational numbers, the last equation implies a = 2, leading to the contradiction 1 = 0. 

If p = 2, then 1 @ 1 = 0 and 1 = - 1 by the uniqueness of additive inverses. This final 

contradiction shows that the ring (E*(G), @) has characteristic zero and is therefore 

torsion-free. 0 
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Lemma 2.2. A torsion-free group of rank one is an E*-group if and only if it is 

divisible by at most finitely many primes. 

Proof. Let G be torsion-free of rank one and suppose G is divisible only by a finite 

set P of primes. We first prove that for any addition @, the ring (E*(G), 63) is reduced 

(as an abelian group). First suppose 1 is a divisible element of (E*(G),@). A routine 

check shows that (l)*, the pure subgroup of (E*(G), @) generated by 1, is in fact a 

subring of (E*(G), @) that is isomorphic to Q. In particular, the multiplicative group 

Q* is isomorphic to a subgroup of E*(G). But Q* 2 z2 x eNO Z [4, p. 3131. On the 

other hand, the multiplicative group of E*(G) looks like Zz x @,zp(p) x @,,p Z, 

where (p) denotes the multiplicative semigroup generated by p. Thus, an embedding 

of Q* into E*(G) is impossible, and 1 is not divisible, as asserted. 

Next, let D be the maximal divisible subgroup of (E*(G),@). There must be a 

nonzero integer n such that ri; = 1 $ . . . @ 1 (n summands) is not invertible as an 

element of (E*(G), cB). Otherwise, the equation fix = nx =x ~3. . $x = 1 would always 

be solvable in (E*(G),@) and 1 would be divisible, contradicting the first paragraph 

of the proof. We may assume for simplicity that n is, in fact, a prime. Suppose do is a 

nonzero element of D. Then, do may be expressed uniquely as a product of primes in 

the multiplicative semigroup of E*(G), regarded as a subset of Q*. But, by divisibility, 

for each positive integer k there exists dk ED such that n”dk = do. This contradiction 

shows that D must be zero and (E*(G),@) is reduced. We may now apply Comer’s 

Theorem [2] to conclude that (E*(G),@) is the endomorphism ring of an abelian 

group, that is, G is an E*-group. 

Conversely, suppose that the group G is divisible by infinitely many primes { p E P}. 
Multiplication by p E P is an automorphism of G while multiplication by a prime not 

in P is not an automorphism. It follows that (neglecting 0) 

E*(GPZ2 x @Z x e(p): 

WI PP 

where B2 is the group generated by multiplication by - 1, each copy of Z represents 

the group generated by multiplication by some p e P, and (p) represents the semigroup 

generated by multiplication by p @ P (see [4, Section XVIII]). Denote by F the field 

of rational functions over Q in the commuting variables {xp: p $! P} and let A be the 

subring of all elements of the form f/g, where f, g are polynomials in the variables 

xp such that g is nonzero whenever any + is set equal to 0 (xp does not divide g). 

Then the nonzero multiplicative structure on A is given by 

A* zZ2 x @Z x @(x~) YE*(G), 
No PZP 

where each copy of Z represents the multiplicative group generated by one of the 

countable many invertible polynomials g and (xp) is the multiplicative semigroup 

generated by xp. Plainly, the additive group of A is a torsion-free divisible group 

of infinite rank. If A is the endomorphism ring of some abelian group H, then H 
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must be a torsion-free divisible group of infinite rank. But the endomorphism ring 

of such a group is uncountable. Thus, A is not an endomorphism ring and G is not 

an E*-group. 0 

A rank-one summand of a torsion-free separable group is called isolated if it is not 

semiconnected. 

Theorem 2.3. A torsion-free separable group is an E*-group if and only if every 

isolated rank-one direct summand is divisible by at most finitely many primes. 

Proof. Assume there is an isolated rank-one direct summand B of the torsion-free 

separable group G such that B is divisible by infinitely many primes p E P. Write 

G = B 43 C. Then B and C are fully invariant (see the proof of Theorem 1.2) so 

that E(G) = E(B) 14 E(C). By Lemma 2.2 there is a torsion-free ring R such that 

R* !x E*(B), but R is not an endomorphism ring. But then S = R@ E(C) cannot be 

an endomorphism ring either, and S* rv E*(G). Thus, G is not an E*-group. 

Conversely, if G has no isolated direct summands, the G is a UA-group by 

Theorem 1.2, and therefore an E*-group. Suppose now that G has isolated summands, 

all of which are divisible by at most finitely many primes. We can decompose G as 

G = Bi,, Gj @ G’, where each Gj is an isolated rank-one summand and G’ has no 

isolated direct summands. This decomposition follows from the fact that if X is an 

isolated rank-one summand then X is the unique summand of type equal to type(X). 
See also [ 11. Suppose that R is any ring with 8: R* ? E*(G). Then, using idempotents, 

we can write R = R(Z) @I R’, where R’ = BE(G’) and R(I) = f3E(eiE, G;). Furthermore, 

for any i E I, we can write R(Z) = Ri @RI, where Ri = OE(Gi). Note that R; is a ring, 

since E( G;) = eiE(G)ei for an appropriate idempotent ei. By Lemma 2.1 and the first 

part of the proof of Lemma 2.2, each Ri is a reduced torsion-free ring. Since G’ is a 

UA-group, then the isomorphism 0 restricted to E(G’) is a ring isomorphism. Therefore 

R’, whence R is a reduced torsion-free ring. 

We next show that for any prime p, R contains no nontrivial homomorphic im- 

age of the abelian group of p-adic integers Jp. Since R is reduced, any map Jp ---i R 

must be manic (any proper homomorphic image of Jp is divisible). In particular, 

we can compose with projections to get maps JI, + R(Z) --j Ri, which must all be 

zero ~ they cannot be manic since R, is countable. Thus, we can restrict our at- 

tention to maps Jp --+ R’. But as noted above, G’ is a UA-group. Thus, R’ Y E( G’) 
as rings, and an embedding 0 : Jp + E(G’) can be used to produce a nonzero map 

0, : Jp + G’, by x * e(x)(g), where g E G’ is chosen to make the map nonzero. But 

a mapping of J, into a reduced separable group must be zero. Otherwise, we could 

produce a nonzero map of Jp into a (reduced) rank one summand. Thus, R con- 

tains no nonzero homomorphic image of Jp, that is, R is cotorsion-free. By the main 

theorem of [3], R is the endomotphism ring of some group and G is a UA-group, 

as desired. cl 
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