

Journal of Pure and Applied Algebra 133 (1998) 203-208

JOURNAL OF PURE AND APPLIED ALGEBRA

Separable torsion-free abelian E*-groups

O. Lubimcev^a, A. Sebeldin^a, C. Vinsonhaler^{b,*}

^aPedagogical State University, 107140 Moscow, Russia ^bUniversity of Connecticut, Storrs, CT 06269, USA

Abstract

A ring R is said to be a unique addition ring (UA-ring) if any semigroup isomorphism $R^* = (R,*) \simeq (S,*) = S^*$ of multiplicative semigroups with another ring S is always a ring isomorphism. See [5,7–9] for earlier work on UA-rings. Depending on the context, we may or may not regard 0 as an element of R^* . An abelian group G is called a UA-group if its endomorphism ring E(G) is a UA-ring. Given an abelian group G, denote by $E^*(G)$ the semigroup of all endomorphisms of G and let R_G be the collection of all rings R such that $R^* \simeq E^*(G)$. The group G is said to be an E^* -group if for every ring $(E^*(G), \oplus)$, where \oplus is an addition on the semigroup $E^*(G)$, there is an abelian group H such that $(E^*(G), \oplus)$ is (isomorphic to) the endomorphism ring of H. Equivalently, G is an E^* -group if for every ring R in R_G there is an abelian group H such that R.

Section 1 is a study of separable torsion-free abelian UA-groups. In Section 2 we develop necessary and sufficient conditions for a torsion-free separable group to be an E^* -group. All groups are abelian. © 1998 Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Class.: 20K20; 20K30

1. UA-groups

Lemma 1.1. A torsion-free (abelian) group of rank one is not a UA-group.

Proof. The endomorphism ring of a rank-one group is a subring of the rationals \mathbb{Q} . But no subring of the rationals is a UA-ring. Indeed, the map that interchanges two primes $p \leftrightarrow q$ in the unique factorization of an integer extends to a semigroup isomorphism from a subring of \mathbb{Q} divisible by p to a subring divisible by q.

^{*} Corresponding author.

We call a rank-one direct summand A of a torsion-free group G semiconnected if a complementary summand for A has a rank-one direct summand of type comparable to that of A. If every rank-one summand of G is semiconnected we call G semiconnected. The next result was announced in [6].

Theorem 1.2. A torsion-free separable group is a UA-group if and only if it is semiconnected.

Proof. (only if) Suppose that $G = A \oplus B$ with rank(A) = 1 and A not semiconnected. We first show that A and B are fully invariant in G. Let $\theta \in Hom(A, B)$ with $\theta(a)$ nonzero for some $a \in A$. Since B is separable, $\theta(a)$ belongs to a completely decomposable direct summand C of B. Therefore $\theta(A)$ has nonzero projection into a rank-one summand of C, whence of B. The type of this rank-one summand is then comparable to the type of A, contradicting that A is not semiconnected. We may conclude that A is fully invariant in G. Similarly, let $\theta \in Hom(B,A)$ with $\theta(b) \neq 0$ for some $b \in B$. Again using the separability of B, the element b belongs to a completely decomposable direct summand C of B. It follows that the map θ can be restricted to a nonzero map from a rank-one summand of C into A, again contradicting the fact that A is not semiconnected. Thus, B is fully invariant as well. Now we have $End(G) = End(A) \times End(B)$. By Lemma 1.1, End(A) is not a UA-ring. It is immediate, therefore, that $End(A) \times End(B)$ is not a UA-ring, so that G is not a UA-group.

For the converse, we will employ the following lemma.

Lemma 1.3. Let R be an associative ring with 1 and suppose $E = \{e_i: i \in I\}$ is a set of idempotents satisfying:

- 1. for any nonzero $r \in R$ there exists e_i in E such that $re_i \neq 0$;
- 2. for any idempotent $e_i \in E$ there exists an orthogonal idempotent $e_j \in E$ such that for any $x \in R$, if $e_i x e_i R e_j = 0 = e_j R e_i x e_i$, then $e_i x e_i = 0$.

Then, R is a UA-ring.

Proof. Let $\theta: R \to S$ be a semigroup isomorphism of rings R and S. We show that θ is additive on Re_i for any $e_i \in E$, that is, $\theta(a+b) = \theta(a) + \theta(b)$ for all $a, b \in Re_i$. The proof proceeds in small steps.

First, if e_i and e_j are orthogonal idempotents of R, then (i): $\theta(e_j re_i + e_i) = \theta(e_j re_i) + \theta(e_i)$. This equality follows from the fact that both $\theta(e_i)$ and $\theta(e_j)$ left annihilate the difference $d = \theta(e_j re_i + e_i) - \theta(e_j re_i) - \theta(e_i)$, while $\theta(e_i) + \theta(e_j)$ acts like a left identity on d. Similarly, $\theta(e_j re_i + e_j) = \theta(e_j re_i) + \theta(e_j)$.

Second, (ii): $\theta(e_j re_i + e_j se_i) = \theta(e_j re_i) + \theta(e_j se_i)$. To see this, let $u = e_j re_i + e_j$ and $v = e_j se_i + e_i$. Then using (i), $\theta(uv)$ is the left side of the equality and $\theta(u)\theta(v)$ is the right. In particular, θ is additive on $(1 - e_i)Re_i$.

Third, $\theta(e_i re_i + e_i se_i) = \theta(e_i re_i) + \theta(e_i se_i)$. This equality follows from the fact that the difference $\theta(e_i re_i + e_i se_i) - \theta(e_i re_i) - \theta(e_i se_i)$ is annihilated by $\theta(Re_i)$ on the right

and by $\theta(e_j R)$ on the left, for any idempotent e_j orthogonal to e_i , in view of the second equality (ii) above. In particular, we may use the idempotent e_j from hypothesis (2) of the lemma to conclude that the difference is zero.

We have shown that θ is additive on both $(1-e_i)Re_i$ and e_iRe_i . An easy calculation, analogous to those above, shows that θ is additive on Re_i as desired.

To prove that θ is a ring isomorphism, suppose that $\theta(a) + \theta(b) = \theta(c)$ and $c \neq a+b$ for some nonzero $a, b, c \in R$. By hypothesis (1), there is an idempotent $e_i \in E$ such that $ce_i \neq ae_i + be_i$. Since θ is an additive isomorphism on Re_i , we obtain the contradiction $\theta(ce_i) \neq \theta(ae_i) + \theta(be_i)$. \Box

We now complete the proof of Theorem 1.2 by showing that a torsion-free semiconnected separable group G satisfies the hypotheses of Lemma 1.3. For our set E of idempotents we take the projections onto rank-one summands of G. The separability of G gives immediately that if r is any endomorphism of G, then there is an idempotent $e \in E$ such that re is nonzero. That is, condition (1) of Lemma 1.3 holds. Another use of separability gives condition (2). Indeed, if e is an idempotent in E corresponding to a rank-one summand A of G, then the complementary summand for A has a rank-one summand B of type comparable to that of A. This is by the semiconnected assumption. Assume first that type(A) < type(B). If e' is the idempotent projection onto the summand B, it is clear that e'Rexe = 0 implies exe = 0. On the other hand, if $type(B) \le type(A)$, then exeRe' = 0 implies exe = 0. Thus, we may apply Lemma 1.3 to conclude that End(G) is a UA-ring, so that G is a UA-group, as desired. \Box

2. E*-groups

Again we begin with the rank-one case.

Lemma 2.1. Let G be a torsion-free group of rank one. Then, for any addition \oplus , the ring $(E^*(G), \oplus)$ is torsion-free.

Proof. Note that for any addition \oplus , the additive identity is 0 and additive inverses are the usual ones because $x = -1 \oplus 1$ satisfies (-1)x = x, so x = 0. Since $(E^*(G), \oplus)$ is an integral domain, the characteristic of $(E^*(G), \oplus)$ is either 0 or p for some prime p. In the latter case, $(a \oplus b)^p = a^p \oplus b^p$, for all $a, b \in (E^*(G), \oplus)$. Assume $p \neq 2$, and write $2 \oplus 1 = a$ for some $a \in (E^*(G), \oplus)$. Then $a^{kp} = (2 \oplus 1)^{kp} = 2^{kp} \oplus 1$. Therefore, as endomorphisms, $a^{(k+1)p} - a^{kp} = a^{kp}(a^p - 1) = 2^{kp}(2^p - 1)$. Since we are working with nonzero endomorphisms of a rank-one group, which can be regarded as rational numbers, the last equation implies a = 2, leading to the contradiction 1 = 0. If p = 2, then $1 \oplus 1 = 0$ and 1 = -1 by the uniqueness of additive inverses. This final contradiction shows that the ring $(E^*(G), \oplus)$ has characteristic zero and is therefore torsion-free. \Box **Lemma 2.2.** A torsion-free group of rank one is an E^* -group if and only if it is divisible by at most finitely many primes.

Proof. Let G be torsion-free of rank one and suppose G is divisible only by a finite set P of primes. We first prove that for any addition \oplus , the ring $(E^*(G), \oplus)$ is reduced (as an abelian group). First suppose 1 is a divisible element of $(E^*(G), \oplus)$. A routine check shows that $\langle 1 \rangle_*$, the pure subgroup of $(E^*(G), \oplus)$ generated by 1, is in fact a subring of $(E^*(G), \oplus)$ that is isomorphic to Q. In particular, the multiplicative group \mathbb{Q}^* is isomorphic to a subgroup of $E^*(G)$. But $\mathbb{Q}^* \simeq \mathbb{Z}_2 \times \bigoplus_{\aleph_0} \mathbb{Z}$ [4, p. 313]. On the other hand, the multiplicative group of $E^*(G)$ looks like $\mathbb{Z}_2 \times \bigoplus_{p \notin P} \langle p \rangle \times \bigoplus_{p \in P} \mathbb{Z}$, where $\langle p \rangle$ denotes the multiplicative semigroup generated by p. Thus, an embedding of \mathbb{Q}^* into $E^*(G)$ is impossible, and 1 is not divisible, as asserted.

Next, let D be the maximal divisible subgroup of $(E^*(G), \oplus)$. There must be a nonzero integer n such that $\tilde{n} = 1 \oplus \cdots \oplus 1$ (n summads) is not invertible as an element of $(E^*(G), \oplus)$. Otherwise, the equation $\tilde{n}x = nx = x \oplus \cdots \oplus x = 1$ would always be solvable in $(E^*(G), \oplus)$ and 1 would be divisible, contradicting the first paragraph of the proof. We may assume for simplicity that n is, in fact, a prime. Suppose d_0 is a nonzero element of D. Then, d_0 may be expressed uniquely as a product of primes in the multiplicative semigroup of $E^*(G)$, regarded as a subset of Q^* . But, by divisibility, for each positive integer k there exists $d_k \in D$ such that $n^k d_k = d_0$. This contradiction shows that D must be zero and $(E^*(G), \oplus)$ is reduced. We may now apply Corner's Theorem [2] to conclude that $(E^*(G), \oplus)$ is the endomorphism ring of an abelian group, that is, G is an E^* -group.

Conversely, suppose that the group G is divisible by infinitely many primes $\{p \in P\}$. Multiplication by $p \in P$ is an automorphism of G while multiplication by a prime not in P is not an automorphism. It follows that (neglecting 0)

$$E^*(G) \simeq \mathbb{Z}_2 \times \bigoplus_{\aleph_0} \mathbb{Z} \times \bigoplus_{p \notin P} \langle p \rangle,$$

where \mathbb{Z}_2 is the group generated by multiplication by -1, each copy of \mathbb{Z} represents the group generated by multiplication by some $p \in P$, and $\langle p \rangle$ represents the semigroup generated by multiplication by $p \notin P$ (see [4, Section XVIII]). Denote by F the field of rational functions over Q in the commuting variables $\{x_p: p \notin P\}$ and let A be the subring of all elements of the form f/g, where f, g are polynomials in the variables x_p such that g is nonzero whenever any x_p is set equal to 0 (x_p does not divide g). Then the nonzero multiplicative structure on A is given by

$$A^* \simeq \mathbb{Z}_2 \times \bigoplus_{\aleph_0} \mathbb{Z} \times \bigoplus_{p \notin P} \langle x_p \rangle \simeq E^*(G),$$

where each copy of Z represents the multiplicative group generated by one of the countable many invertible polynomials g and $\langle x_p \rangle$ is the multiplicative semigroup generated by x_p . Plainly, the additive group of A is a torsion-free divisible group of infinite rank. If A is the endomorphism ring of some abelian group H, then H

must be a torsion-free divisible group of infinite rank. But the endomorphism ring of such a group is uncountable. Thus, A is not an endomorphism ring and G is not an E^* -group. \Box

A rank-one summand of a torsion-free separable group is called *isolated* if it is not semiconnected.

Theorem 2.3. A torsion-free separable group is an E^* -group if and only if every isolated rank-one direct summand is divisible by at most finitely many primes.

Proof. Assume there is an isolated rank-one direct summand B of the torsion-free separable group G such that B is divisible by infinitely many primes $p \in P$. Write $G = B \oplus C$. Then B and C are fully invariant (see the proof of Theorem 1.2) so that $E(G) = E(B) \oplus E(C)$. By Lemma 2.2 there is a torsion-free ring R such that $R^* \simeq E^*(B)$, but R is not an endomorphism ring. But then $S = R \oplus E(C)$ cannot be an endomorphism ring either, and $S^* \simeq E^*(G)$. Thus, G is not an E^* -group.

Conversely, if G has no isolated direct summands, the G is a UA-group by Theorem 1.2, and therefore an E^* -group. Suppose now that G has isolated summands, all of which are divisible by at most finitely many primes. We can decompose G as $G = \bigoplus_{i \in I} G_i \oplus G'$, where each G_i is an isolated rank-one summand and G' has no isolated direct summands. This decomposition follows from the fact that if X is an isolated rank-one summand then X is the *unique* summand of type equal to type(X). See also [1]. Suppose that R is any ring with $\theta: R^* \simeq E^*(G)$. Then, using idempotents, we can write $R = R(I) \oplus R'$, where $R' = \theta E(G')$ and $R(I) = \theta E(\bigoplus_{i \in I} G_i)$. Furthermore, for any $i \in I$, we can write $R(I) = R_i \oplus R'_i$, where $R_i = \theta E(G_i)$. Note that R_i is a ring, since $E(G_i) = e_i E(G)e_i$ for an appropriate idempotent e_i . By Lemma 2.1 and the first part of the proof of Lemma 2.2, each R_i is a reduced torsion-free ring. Since G' is a UA-group, then the isomorphism θ restricted to E(G') is a ring isomorphism. Therefore R', whence R is a reduced torsion-free ring.

We next show that for any prime p, R contains no nontrivial homomorphic image of the abelian group of p-adic integers J_p . Since R is reduced, any map $J_p \rightarrow R$ must be monic (any proper homomorphic image of J_p is divisible). In particular, we can compose with projections to get maps $J_p \rightarrow R(I) \rightarrow R_i$, which must all be zero – they cannot be monic since R_i is countable. Thus, we can restrict our attention to maps $J_p \rightarrow R'$. But as noted above, G' is a UA-group. Thus, $R' \simeq E(G')$ as rings, and an embedding $\theta: J_p \rightarrow E(G')$ can be used to produce a nonzero map $\theta_g: J_p \rightarrow G'$, by $x \rightarrow \theta(x)(g)$, where $g \in G'$ is chosen to make the map nonzero. But a mapping of J_p into a reduced separable group must be zero. Otherwise, we could produce a nonzero map of J_p into a (reduced) rank one summand. Thus, R contains no nonzero homomorphic image of J_p , that is, R is cotorsion-free. By the main theorem of [3], R is the endomorphism ring of some group and G is a UA-group, as desired. \Box

References

- S. Bazzoni, C. Metelli, On abelian torsion-free separable groups and their endomorphism rings, Symp. Math. Ist. Naz. Alta Mat., Francesco Severi, 1979, Roma, pp. 259-285.
- [2] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. 13 (1963) 687-710.
- [3] M. Dugas, R. Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Z. 184 (1982) 451-470.
- [4] L. Fuchs, Infinite Abelian Groups, vol. II, Academic Press, New York, 1970.
- [5] R.E. Johnson, Rings with unique addition, Proc. Amer. Math. Soc. 9 (1958) 57-61.
- [6] O.V. Lubimcev, Uniqueness of the addition on the multiplicative endomorphism semigroup of separable torsion-free abelian groups, Internat. Conf. on Semigroups with Applications, St. Petersburg, 1995, Abstract, p. 100.
- [7] A.V. Mikhalev, Multiplicative classification of associative rings, Math Sb. 2 (1988) 210-224.
- [8] C.E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math. Soc. 54 (1948) 758-764.
- [9] W. Stephenson, Unique addition rings, Can. J. Math. 21 (1969) 1455-1461.